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On the geometry of chiral dynamics: I 

J. S. DOWKER 
Department of Theoretical Physics, University of Manchester 
MS.  received 3rd September 1969 

Abstract. The group-theoretical discussion of chiral dynamics is re-expressed 
in analytical terms appropriate to the geometry of group space. Closed, but 
transcendental, expressions are given for the meson Lagrangian for the cases of 
G 8 G in general and SU(2) 8 SU(2) in particular. 

1. Introduction 
The reproduction of the results of the partially conserved axial-vector current 

hypothesis and current algebra by phenomenological chiral-invariant Lagrangian 
methods has prompted a great deal of work in this field, and we refer to the. review 
article by Gasiorowicz and Geffen (1969) for a detailed discussion and the relevant 
literature. 

The  mathematical basis of the theory seems to be that of non-linear realizations 
of the chiral group, and a general discussion can be found in the papers of Coleman, 
et al. (1969) and Callan et al. (1969). Quite generally the 0 -  mesons are understood 
to form the coordinates on a manifold, in general curved, attached to each space-time 
point. Chiral invariant forms are then constructed according to the usual rules of 
tensor analysis. These forms are 'generally covariant' under analytic redefinitions of 
the meson fields, and it is easy to see that this means that only derivative couplings 
will emerge. Crudely speaking, the coordinates E" are not tensors but the differentials 
d p  are. 

For the case of SU(2) @ SU(2) Meetz (1969) has given an explicit geometrical 
interpretation of the non-linear realizations in terms of a 'curved isospin' space. A 
generalization to arbitrary chiral groups has been discussed by Isham (1969 a, b). 
The  general ideas of this scheme are very attractive but the present author finds 
himself somewhat put off by the details of the formalism and wishes, in this paper, to 
give another discussion of this geometrical approach. No doubt all we shall be doing 
is using an 'old-fashioned' language that the author understands in place of one which 
he does not. However, the coordinate-free technique, while more modern, seems to 
be unnecessary, at least at this level. 

2. The basic structure 
We shall be specifically concerned with a chiral group K of the product form 

G, @ G,, where G, is an Y parameter, simple Lie group, for example SU(n), 
n2 = r +  1. When we wish to specify to which G, group we refer we shall write 
K = (G,)L 0 (G,)n, i.e. left and right groups, (G,)L and (Gr)R are commutative and 
so are maximum invariant subgroups of K (Eisenhart 1933, p. 121). 

We now introduce X, the group manifold of G,, i.e. the space coordinatized by 
the parameters t", 7" ..., labelling the elements of G,, M = 1, 2 ... Y. 

(For all definitions concerning spaces, coordinates, etc., we refer to the tensor 
analyst's Bible (Schouten 1954).) 

The  group K can now be interpreted as the product of the so-called first and 
second parameter groups of G,, which are isomorphic to G, itself. If we denote by 5 
the group element (point) whose coordinates are E", then the group multiplication 
of G, 

't = 716 (1) 
A 1 33  
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gives point transformations 5 -+ '6 which, for all 7 ,  form a group-the first parameter 
group of G,-clearly isomorphic to G,. Similarly the second parameter group is 
given by the family of transformations 

5 -+'5 = 57. 
In  coordinates, (1) and (2) read 

'5" = Fa[( ,  71 (3) 

'5" = F"[7, (1 (4) 
and 

where the functions (functionals) Fa define the group combination law. Equations (3) 
and (4) provide, in fact, non-linear realizations of the abstract G,. 

We can thus represent K by the transformations 

That subgroup of K defined by vL. = 7g1, where 7 - l  means the element inverse 
to 7 ,  is the adjoint group of G, which is isomorphic to G, if G, is semi-simple. Let us 
denote the adjoint group by H. 

The coordinates 4" (or the coordinate system ( a ) )  on X are, here, quite general 
ones. ;In important role is played by the canonical coordinates. In  terms of these, 
the transformations ( -+ ' 5  of the adjoint group take the form of linear homogeneous 
transformations, and we can now see the connection with the work of Coleman et al. 
(1969). For example, for chiral SU(2) the group H will just be the group of pure 
isospin transformations under which the pion field transforms linearly. 

The quark fields (e.g. nucleons or 'spinors') are introduced in the same way as in 
general relativity, that is, locally (or, more accurately, pointwise) through the tangent 
space concept. 

We now proceed to detail these ideas in analytical form. 

3. The geometry of group space 
The geometry of group space forms a topic of classical mathematics, the three basic 

mkmoires being by Cartan (1927 a, b) and Schouten (1929). Discussions, from 
different viewpoints, can be found in the work of Eisenhart (1933) and Schouten (1954). 

For this reason we do not want to develop the theory ab initio and shall just 
content ourselves with an outline, albeit long and standard. 

As might be expected, one can develop the theory synthetically or analytically. We 
prefer the latter, as a rule, although it is often easier to see what is happening syn- 
thetically. However, we do not wish to burden ourselves, or the reader, with too many 
definitions and theorems. The synthetic approach will be found in Cartan (1927 a, b). 

We begin by introducing the quantities 

which appear in the classical theory of Lie groups. 71 is some fixed point. These quan- 
tities arise when 'infinitesimal' transformations are ionsidered. Thus, if we change the 
parameters qa in (3) to q"+dq", then '4" will be altered to '$+d'$. We can also 
arrive at '.$+ d'5 from '5 by an infinitesimal transformation, with parameters ria + $qa, 
71 corresponding to the unit element of G, or the 'origin'j-, The  relation between 

t The origin will be represented by 7, E etc. 
0 0  
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dq' and $7" is 

We assume the boundary conditions 

We can look upon the quantities A: and AA as defining structures on the space X,, 
specifically absolute parallelisms (for a history of this topic see Cartan 1930). In  other 
words we look upon the A:(A:) as giving at each point a set of Y vectors labelled by the 
index a(A). These vectors form a coordinate mesh, and parallelism is defined by 
saying that two general vectors at different points are parallel if they have the same 
coordinates with respect to the local coordinate systems formed by the A:, A,. The  
parallelism defined by the A: is termed ( +) parallelism and that by A,$, ( - )  parallel- 
ism. These parallelisms are absolute because there is only one vector at a given point 
parallel to a chosen vector at another point. 

The  quantities A; and AS define, in fact, two 'anholonomic' coordinate systems 
( a )  and (A)  (see Schouten 1954, p. 99). The  anholonomic or local coordinates of a 
convariant vector v, are 

and similarly for the (A)  system. For a contravariant vector va we have 

va = A ~ V "  
where the A; are the inverse or reciprocal set to A;, i.e. 

b b  
A:A, = sa, AEA," = 8;. 

In  particular, the anholonomic components of dq" will be 

They are written (dq)" because dqa would imply they are the differentials of some 
functions qa(qu), which is not the case in general. This is the origin of the term anholo- 
nomic. It can easily be checked that two vectors v"dt and v"dt at 7 and q respectively 
are ( + ) parallel if 1 2 1 2 

(9t'; 'dt)Y-l = (q+vdt)q- '  2 2  2 ( 7 )  

Equations (7)  and (8) are convariant under transformations ofK, (5), i.e. equations (7) 
and (8) with all quantities replaced by primed quantities are valid if the relation between 
primed and unprimed is that given by (5). This means that two (infinitesimally close) 
parallel vectors are transformed by (5) into two other such vectors. I n  other words, 
the geometry around the point ' 5  is the same as that around E ,  the geometry being 
that of (+) and ( - )  parallelism. The  group K is therefore a group of 'affine motions', 
or 'isometries'. 

More particularly, it is simple to show that a vector and its transformi. by the first 
(second) parameter group are ( - )  (( +)) parallel. It is clear from the definitions of the 

t By transform we mean here that the transformed vector is obtained by joining the points 
obtained by the point transformation from the end points of the original vector, i.e. it is the 
'dragged along' vector. 
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parallelisms that the vectors A3771 and AA[y] form vector fields which are (+) and ( - )  
parallel respectively, and so are absolutely invariant if dragged along by point trans- 
formations belonging to the second and first parameter groups respectively. 

Analytically the one-parameter subgroups of the first and second parameter groups 
are the trajectories obtained by integrating the equations 

d P  
- = eaAfl[(], ea = constants 
dt 

and 

We can then say that the Lie derivatives (Schouten 1954, p. 102) of A" and A: with 
respect to -4; and A: respectively are zero: 

EA: = 0 = LA:. 
a A 

Since the relation between the components of two infinitesimally close parallel 
vectors will be a linear one, we can introduce linear connections for the two types of 
parallelism. Since the A: and A: are auto-parallel fields, we have 

hence 

The curl-atures corresponding to these two connections vanish, as follows by explicit 
calculations and also from the fact that the parallelism is absolute, i.e. the connections 
can be integrated (taking a vector around any closed curve by parallel displacement 
yields no change). 

In  general, the connections are not symmetric 

and the space is said 
The geodesics or 

have the equations 

* .(I *(I s.;, = r[vp] $1 0 
to possess torsion. 
paths in X, are defined to be autoparallel curves and therefore 

if an affine parameter t is used. I t  can be shown synthetically that the (+) geodesics 
coincide with the ( - ) geodesics, so that from (1 1) 

which defines the symmetric connection FaB, the so-called (0) connection. This 
connection is not integrable. Its curvature tensor R;iba does not vanish. 

I t  is clear from (9) and (10) that the trajectories of the first parameter group are ( - )  
auto-parallel and those of the second parameter group are (+ )  auto-parallel and 
therefore both coincide with the paths (1 1) determined by the (0) connection. 

Other important relations that can be proved are 
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and so 
- 

+ .U .cc Si0 = . 
Also vie can show that dragging along over a ( f ) parallel infinitesimal field is the same 
as a ( t ) parallel displacement over the same field, i.e. 

For convenience of having the correct factors we define the quantity c;jU by 

. . a  + * . a  
C Y B  = -2syB 

and in terms of which the curvature of the (0) connection is given by 

..E . . a  R6jia = - $ C g ,  C,B . 
Further, it can be shown that cyj" is (+), ( - )  and (0) constant 

(12) 
. .cc vsc,, = 0 

and so we have the important result that the curvature R& is covariant constant: 

The  anholonomic components of the antisymmetric part of the ( i ) connections 
are just the structure constants of the group G,. Thus we have for these components 

B Y  
c,"b = -& = C;;"A;A~A, 

(remembering that c ; j a  is a tensor in contrast to the symmetric part) and from the 
condition <A, = 0 there follows Maurer's equation 

ZLyAi1 = ,- J&A;AB. b 

I t  can be proved, in the standard manner, that the cSb are constants. If we wish we can 
use the (-4) system of anholonomic coordinates and, in fact, it is convenient to choose 
the quantities A: and A; so that they coincide at the origin 

A371 = AXTI. 
Then  vie have 

A A b  c a  
cCB = 8a8BsCCcb* 

To show that the cgc are the structure constants occurring in the equation for the 
commutator of the generators, we consider infinitesimally small transformations of 
the parameter groups. We already have these in (9) and (10). We define the infinitesi- 
mal operators 8, and a A  so that 

d t U  = teaZafa, dt"  = teAa,fa. 

Thus for the commutators we have the structural formulae 
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and 
A 

[ac, a,] = -c& a,, 2 A  A i a u .  

Integrating equations (9) and (10) yields the finite forms of the parameter groups 

qn = exp(teaaa)2a, qa = exp(teAGA)ya 

where we have chosen the origin as initial point. These equations give the relation be- 
tween the canonical parameters tea and the q", i.e. the coordinates 7" and qa = tea 
refer to the same point in group space. In  terms of va the paths become simply 
straight lines and the corresponding transformations can be called translations. 

As explained by Schouten (1929), a different type of index must be employed for 
the canonical coordinate system. We shall use latin letters from the middle of the 
alphabet, i, j etc. Thus we define the canonical coordinates by 

qi = 8,tea = aaqa? 

and we shall have the intermediate quantities A:, A," which enable us to pass from 
one system to another. We assume that all the coordinate systems ( E ) ,  (a), (A)  and (i) 
coincide at the origin, i.e. 

i 4 

t 
8: = A"?], A:[?] = s:, A,[%] = st. 

Canonical coordinates are characterized by the condition 

qiA,a[q] = q",a 

which enables us to calculate the quantity Ay. I t  is found that1 

with 

Similarly it is found for A; 

The importance of canonical coordinates lies in the fact that in terms of them the 
transformations of the adjoint group become linear and homogeneous, as mentioned 
before. The  adjoint group plays an important role in the classification of the structure 
of Lie groups. We have defined the adjoint group as the group of inner automorphisms 

%$ -+ '5: = qfq-1. (16) 
t For 7 itself we can use i or a, similarly dql or dv", but we must remember not to confuse 

this last with (dy)" = AgdTa.  
This construction is due to Schur (1891). 
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If canonical coordinates are used for and ’5 ,  we find the representation of (16) as 

’p Di[q].$j i (17) 

where the matrices, for each element 7 of the group G,, form the adjoint representation 
of G,. In  terms of canonical parameters for 7 we have 

or, in terms of infinitesimal operators E,, 

where 
’e = exp{qaEu([)}p 

These operators have thexommutator - -  c -  
[bay r b ]  = C u b B c .  

For a general matrix representation the relation between the generators J b ,  as the 
word is commonly used?, and the infinitesimal operators or Lie symbols xb is 

so that the transformation in representation space reads 

’93’ = exp(XbX,)cpj = [exp(iXbJb)](cpi. 

Hence for the adjoint representation the generators are the matrices whose components 
are the structure constants, as is well known. 

I n  terms of an exponential mapping, (16) can be written 

exp( - q’Xa) exp(PXa) exp(qaXa) = exp(’PXa). 

We are here considering the group elements as operators on some unspecified mani- 
fold, although this is not necessary. 

Equations (17) and (18) can be derived directly in terms of canonical coordinates in 
the case where ? corresponds to an infinitesimal operation. Thus we perform a 
transformation of the first parameter group with parameters $7” and follow it with a 
transformation of the second group with parameters - o ? A  = - 8&lqa. For the 
total change in f we find 

d t  = ( A k l  - A:[51&ha 

and, using the expressions (14) and (15), this reduces to$ 

d t t  = U:(() gqaSi = - {qc~%aS$IQs’ 

which is just (17) in infinitesimal form. 
7 We make Jb Hermitian for unitary groups. 
$ cf. Kowalewski (1931) pp. 170-87. 
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For future reference we give the change in [ for the infinitesimal transformation 

f +& 
which represents a 'pure chiral' transformation. We find 

d e  = [U([)  coth($U([))]~ iqaSL. 

The adjoint group can be looked upon in various guises. According to (163 it is an 
auto-morphism of the group G,, and, as such, clearly leaves the structure constants 
numerically invariant. In  symbols, if 

eaa,  = ' ea '8 ,  

defines 'a,, where ea and 'ea are related by an adjoint transformation, 

we have 
'ea = (e- L ' ) t e b  

I n  C I  
Ob] = cab  

We say that quantities like a, with a lower index transform according to the cs-adjoint 
representation. The  numerical invariance of ckb can be easily checked. 

The  adjoint group transforms geodesics through 7 into geodesics through 77 and, 
since the canonical coordinates of a point depend esse&ially on the geodesic on fvhich 
it sits, i.e. on the tangent vector at the origin, we can see why they are transformed linearly. 
We can thus interpret the ea as Cartesian coordinates of a flat affine space attached to 
the point 7, i.e. a tangent space of 7 7 .  The adjoint group is then a group of linear 
transformations of this tangent space which leave 7 unchanged. 

4. Group space as a Riemannian space 
Since the c:, are invariant under the adjoint group so are all the quantities that 

can be constructed from them. A particularly important set is given by the following 
traces of multiples of the matrices C,: 

0 

0 

IcaIcb E c,"b 

g, = T r  C, 
g a b  Tr(CaCb), Q = constant 

g a b c  Tr(CaCbCc) 

and Cartan has shown that the group G, is semi-simple if the matrix whose elements 
areg,, is non-singular (or has rank Y). In  this case we can think of the gab as a metric 
in the adjoint representation space, i.e. the tangent space. The  adjoint and co-adjoint 
representations are equivalent and we pass from one to the other by raising and lower- 
ing indices using the metric gab and its inverse gab. 

We now useg,, to introduce a metric into group space. Thus we definegas by 

= A",igab (20) 
so that theg,, are the anholonomic components ofg,,. I n  terms of the c;j' we have 

g,, = QTr(CaC,) 
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and so contraction of the curvature 

yields 

Similar constructions in terms of the (A)  anholonomic system are possible and we find 
the equality 

But we already have that the curvature is (0) covariant constant, and so therefore is 

This implies that the space is Riemannian. This particular construction is only possible 
for semi-simple groups. It is possible to define metric structures and Riemannian geo- 
metry for the group space of any group, but the Riemannian geodesics do not, in 
general, coincide with the trajectories of the group, which is somewhat displeasing. 
We shall restrict ourselves to semi-simple groups, particularly to simple compact 
ones. 

We emphasize that the Riemannian geometry is of a very special type, being such 
that the curvature is covariant constant, i.e. conserved under parallel transport. 
Spaces with this property are termed 'symmetric' (Schouten 1954, p. 163), for a reason 
we shall encounter shortly. They have been studied both from the group-theoretical 
and purely geometrical aspects, historic papers being by Cartan (1927 a, b, 1929). 

For compact simple groups like SU(n) we can always make, by an appropriate 
choice of coordinates in adjoint space, Tr(C,Cb) proportional to &ab, and so we shall 
choose g a b  to equal 8ab. The  matrix Ca is antisymmetric. 

5. Motions in group space: chiral invariant structures 
We have mentioned these earlier and now want to discuss them analytically, 

confining ourselves to the case of semi-simple groups, i.e. to motions in a Riemannian 
space. By definition, a point transformation [ + ' E  is a motion if the following 
condition is satisfied : 

This means simply that the geometry in the region around '5 is identical with that 
around [. Formally, (22) implies that the Lie derivative? of g,, vanishes over the 
transformation 5 -+ '5 and, if this latter belongs to K ( = (1st parameter group) 0 (2nd 
parameter group)), EguB does vanish as follows from (20), (21), and the vanishing of the 
Lie derivatives of the A; and A$ (or, equivalently, of the c;bY). 

We can now see how to obtain chiral invariant structures. Expression (22) is one 
of the simplest. All we do is associate A-ly with the appropriate meson field (e.g. pion) 
and note that the space-time derivative ap /ax '  transforms like deff under coordinate 
transformations 5" -+ p', so that, witli Meetz (1969) and Isham (1969), we may 
replace dCa by 2,p and obtain the kinematic part of the meson Lagrangian, 

gu/3(5) dEU d t 4  = gCco('0 d't" d ' P .  (22) 

- +h-2g,,(f)aUpafita. 
If we use canonical coordinates the explicit construction of the metric is easv. Thus 

o =  - U  
t See Schouten (1954, p. 346). There are various ways of describing the situation. 
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We note that the expansion in terms of U 2  is just an expansion in the curvature by 
virtue of the relation 

Replacing E" by AM", the meson field, the Lagrangian reads 
[ U 2 ] d a  = -4tbi?Rdcba* 

= 4afiMaaL,iWa -gh2RdcbaafiMdMcMba,Ma+ ... . (24) 
If we allow for a difference in normalization this is identical with the expression of 
Callan et al. (1969), 

Du( being a 'covariant derivative'. 
The  comparison of (24) with the series given by Isham (1969) shows that our X is 

twice his. This  is consistent with the paper of Callan et al. (1969). 
Again for comparison we give the expression we find for the analogue of the fab 

quantities of Weinberg (1968) and generalized to arbitrary groups by Macfarlane et al. 
(to be published). I n  our notation this quantity should be denoted by F i  and is just 
the change in the meson field (f for an infinitesimal purely chiral transformation with 
parameters dqb = 8:dt. We have already computed this and equation (19) gives 

"Y 

F&) = [U(!$) coth {4U(o)lfiaib. (25) 

Other chiral invariant quantities for can be constructed simply by combining 
the concomitants of c i j y ,  for example gaBY, with appropriate numbers of d p  to form 
scalars in X,. These will all be 'higher derivative' terms. The algebraic problems 
involved are just those of the linear adjoint group since we can always work in an 
anholonomic coordinate system. All the invariants with which we are familiar in 
'ordinary' SU(n) theory, for example, can easily be transcribed into chiral invariant 
(differential) forms. 

The particularly simple, i.e. familiar, algebra of SU(2) allows us to take the ex- 
pressions (23) and (25)  a little further in this case?. Now we have cabc = cabc and U 2  
reduces to [ Q [--t21, where t2 = pp = pea. Hence 

U4 = - t 2 U 2 ,  etc. 

and we find for gt j  the form 

f 
and for the Fa quantity 

3 2  FL = -[cot(+()8,+-{l-+[cot (+()}tuff, 
t2 

t The relevant algebra is detailed in Kowalewski (1931, p. 175 et seq.), where the case of 
SU(2) is discussed in detail relevant to the considerations of the present paper. 
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Comparing with Weinberg’s equation (2.10) (Weinberg 1968), we see that we have 

I t  can be checked that these functions satisfy Weinberg’s equation (2.11). 
The group space of SU(2) is a three-dimensional space of constant (positive) 

curvature, i.e. a three-sphere with appropriate topology?. Its geometry has been studied 
intensively, forming, as it does, one of the two original non-Euclidean geometries. T h e  
other one, hyperbolic geometry, corresponds to a non-compact group. Cartan, particu- 
larly, has discussed the significance of group space in relation to the classification of 
geometries achieved by Klein in his ‘Erlanger Program’. The  whole subject is an 
extremely fascinating one, but is not mathematically fashionable$. 

We refer to the papers of Meetz (1969) and Isham (1969) for discussions on the 
geometry of SU(2) from the chiral viewpoint. 

It should be clear where the term ‘chiral’ comes in but, in order to maintain the 
pedagogical nature of this paper, we shall briefly deal with this question. 

I t  can be proved that the biggest connected group of isometries is, in fact, the 
group K of transformations 

i.e. the direct product of left and right translations. However, there are other iso- 
metries. One such is 

termed ‘reflection through the origin’. More generally we have ‘reflection through the 

t -+ tE = ?1Lf?1l2 

[ + t [  = 5 - 1  

(26) 

point (’ : 
E --t 

The set of such transformations forms not a group but a family. They do form a group 
when combined with (26). This disconnected group is not, in general, the biggest 
group of isometries. Cartan (1927 b) has shown, for semi-simple groups, that there 
are exceptional cases where the isometry group consists of four or twelve separate 
parts. We shall not be concerned with these (interesting) pathological cases. 

In  terms of canonical coordinates, with respect to the point in question, 5 ,  the 
transformation (27) amounts to reversing the sign of the coordinates, i.e. it sends a 
point along the geodesic connecting it with 5 to an equal distance on the opposite 
side-hence ‘reflection’. Analytically it can be checked that, again in canonical 
coordinates, 

so that 

+ i  + t  
rkj(‘$ = - rk j ( - ‘$  

and also 

and geodesics go over into geodesics. Further, if two (+) parallel vectors are reflected 
they become ( - )  parallel. I n  other words, the first parameter group changes place 
with the second one under reflection. This can, of course, be shown directly. Jf we 
identify the group and its first parameter group, then the group of inverse transforma- 
tions is to be identified with the second parameter group (see Kowalewski 1 9 3 1 , ~ .  253). 
If for ‘reflection’ we read ‘parity transformation’, then the origin of the word ‘chiral’ 
is clear if we remember that the mesons are pseudo-scalar ones. 

g d t )  = g d  - E )  

t We pass by all such considerations of connectedness. 
$ It appears, as a detail, in the modern theory of Lie groups (e.g. Helgason 1968). 
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Spaces for which reflections through all points are isometries are called ‘symmetric’ 
spaces. The  necessary and sufficient condition for this is that the curvature should be 
covariant constant (e.g. Schouten 1954, Cartan 1927 a). Group space is thus a very 
special sort of space, one with a very special structure. 

6. Conclusion 
We have re-expressed the rather group-theoretic treatment of chiral dynamics, as 

given, for example, by Coleman et  al. (1969) and Isham (1969), in rather more 
analytic language, which we find more understandable, particularly in view of the 
strong geometrical flavour of the terminology. Such a re-expression may have more 
than personal value in that it allows us to examine the historical development of the 
mathematics with an eye on its possible physical relevance to the chiral problem. 

One possibility with which the author has been toying is that of translating the 
bootstrapping of internal symmetries (e.g. Leutwpler and Sudarshan 1967) into 
geometrical terms. In previous work the author was struck by the similarities of some 
of the equations that resulted from self-consistency to those occurring in Riemannian 
geometry and the notation used (Dowker 1964) was adjusted accordingly. It is perhaps 
significant that both theories, chiral dynamics and self-consistent symmetries, place 
restrictions on the type of diagrams employed, or needed. 

The present discussion is incomplete as we still have the ‘other fields’ problem, i.e. 
the introduction of quarks and other particles. This will be dealt with at another time. 
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